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Abstract
Lorentz transformation of the reduced helicity density matrix for a massive
spin- 1

2 particle is investigated in the framework of relativistic quantum
information theory for the first time. The corresponding helicity entropy
is calculated, which shows no invariant meaning as that of spin. The
variation of the helicity entropy with the relative speed of motion of inertial
observers, however, differs significantly from that of spin due to their distinct
transformation behaviors under the action of the Lorentz group. This novel
and odd behavior unique to the helicity may be readily detected by high-energy
physics experiments. The underlying physical explanations are also discussed.

PACS numbers: 03.67.Mn, 03.65.Ge, 03.65.Ud

Quantum information theory is usually formulated in the framework of non-relativistic
quantum mechanics, since particles moving at relativistic speeds may not be needed to realize
the promise of quantum information processes such as quantum computation. However,
relativity, especially special relativity plays a significant role in quantum entanglement and
related quantum technology, such as teleportation. This point is obviously justified by quantum
optics, which is well established on the basis of not only quantum theory but also special
relativity in nature [1]. For example, most EPR-type experiments have been performed
by photon pairs [2, 3]. In addition, experiments of quantum teleportation have also been
extensively carried out using photons [4, 5].

Recently, in particular, considerable efforts have been expanded on the theoretical
investigation of quantum information theory in the relativistic framework, which has gone
from photons to electrons, and from explicit examples calculated in some specific cases to a
general framework formulated in relativistic quantum mechanics and even relativistic quantum
field theory [6–36]. For a review, please refer to [18]. A central topic in this interesting and

1751-8113/07/360857+06$30.00 © 2007 IOP Publishing Ltd Printed in the UK F857

http://dx.doi.org/10.1088/1751-8113/40/36/F02
mailto:she@pku.edu.cn
mailto:sxshao@mail.bnu.edu.cn
mailto:hbzhang@pkuaa.edu.cn
http://stacks.iop.org/JPhysA/40/F857


F858 Fast Track Communication

active research field is whether quantum entanglement is observer dependent. Especially, for
a pure one-particle state, it has been shown that the reduced spin density matrix remains no
covariant between inertial observers with relative motion, and the corresponding spin entropy
is not an invariant scalar except in the limiting case of sharp momenta [8].

However, as implied above, for Dirac fields, previous discussions of relativistic quantum
information theory focus primarily on quantum entanglement between spin and momentum
degrees of freedom. On the other hand, since the helicity has an advantage in providing a
smooth transition to the massless case, it is the helicity rather than spin that is more often under
both theoretical consideration and experimental detection in high-energy physics. Although
both the helicity states and the spin states can constitute the basis of Hilbert space of one
particle, they differ in the way of unitary transformation under the action of Lorentz group
[37]. As a result, the entanglement properties for helicity differ remarkably from those for
spin after we trace out the momentum degree of freedom. Especially, it is found that in the
sharp momentum limit, unlike the vanishing spin entropy, at small velocities of the inertial
observer the helicity entropy demonstrates a sudden jump onto a constant value, half of the
entropy for the maximal entangled Bell states, which may be easily detected in high-energy
physics experiments. Thus for both theoretical completeness and possible implementation
in high-energy physics, it is intriguing and significant to investigate quantum entanglement
between helicity and momentum in a relativistic framework. In this communication, we shall
make a first step toward investigation of this important but ignored issue.

Starting with a field with positive mass m and spin 1
2 , we can also construct the helicity

states |p; λ〉 as a complete orthonormal basis for Hilbert space of one particle. The unitary
operator U(�) acting on these helicity states for a Lorentz transformation � gives [37]

U(�)|p; λ〉 =
√

(�p)0

p0
Dλ′λ[R−1(�p)L−1(�p)�L(p)R(p)]|�p; λ′〉

=
√

(�p)0

p0
Dλ′λ[B−1(�p)R−1(�p)�R(p)B(p)]|�p; λ′〉

=
√

(�p)0

p0
Dλ′λ[Z(�,p)]|�p; λ′〉. (1)

Here R(p) is the rotation that carries the z-axis into the direction p, B(p) is the boost from rest
to the momentum |p| in the z-direction, and L(p) is the pure boost from rest to the momentum
p. Obviously, L−1(�p)�L(p) is just Wigner rotation, usually denoted by W(�,p). In
addition, D is the spin- 1

2 irreducible unitary representation of Lorentz group. Note that these
helicity states differ in a way of unitary transformation from spin states under the action of
Lorentz group, since under Lorentz transformations spin states change according to Wigner
rotation, which is related to Z(�,p) as Z(�,p) = R−1(�p)W(�,p)R(p). It is of interest by
itself to investigate the implications and ramifications resulting from this difference. However,
it is another problem, which is beyond the scope of this communication, and will be expected
to be reported elsewhere [38].

Thus a pure one-particle state is represented by

|ψ〉 =
∑

λ=± 1
2

∫
d3p ψ(λ, p)|p; λ〉 (2)

with the normalized condition∑
λ=± 1

2

∫
d3p|ψ(λ, p)|2 = 1. (3)
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It is worth noting that this normalized state with a superposition of various momenta represents
a more physical reality since a particle has no definite momentum in general, although for
convenience the momentum eigenstates are extensively employed in textbooks on high-energy
physics and quantum field theory. Then the reduced helicity density matrix associated with
the above-normalized state is obtained by tracing out the momentum degree of freedom, i.e.,

ρ = Trp[|ψ〉〈ψ |] =
∫

d3p〈p|ψ〉〈ψ |p〉

=
∑
λ,λ̃

∫
d3p[ψ(λ, p)ψ∗(λ̃, p)|λ〉〈λ̃|]. (4)

Here, we have used the orthonormal relation for the helicity states. Later a Lorentz
transformation � changes the one-particle state to

|ψ ′〉 = U(�)|ψ〉

=
∑

λ=± 1
2

∫
d3p

√
(�p)0

p0
ψ(λ, p)Dλ′λ[Z(�,p)]|�p; λ′〉, (5)

and the reduced helicity density matrix to

ρ ′ =
∑
λ′λ̃′

∫
d3p{Dλ′λ[Z(�,p)]ψ(λ, p)ψ∗(λ̃, p)D

†
λ̃λ̃′[Z(�,p)]|λ′〉〈λ̃′|}. (6)

By equation (1), D[Z(�,p)] is always an identity matrix if � is a purely spacial rotation
transformation. Thus the reduced helicity matrix is completely the same for those inertial
observers without relative motion but with different identification of spacial direction. This
property essentially stems from the fact that the helicity (p · J)

|p| remains invariant under a

purely spacial rotation transformation6. Furthermore, note that any Lorentz transformation
can always be decomposed into the product of a pure boost and a pure rotation, next we shall
concentrate on what happens to the reduced helicity matrix and the corresponding helicity
entanglement entropy when � is a pure boost transformation. Especially, taking into account
that those pure boost transformations are similarly equivalent with one another by rotations,
which means the reduced helicity density matrix only depends on the magnitude of velocity
of relative motion between inertial observers, now we shall only need to consider pure boost
transformations along the z-axis.

In the special case mentioned above, set

� =




cosh η 0 0 sinh η

0 1 0 0
0 0 1 0

sinh η 0 0 cosh η


 , η � 0, (7)

and

p = m[cosh τ, sinh τ(sin θ cos φ, sin θ sin φ, cos θ)], τ � 0, (8)

then employing equation (1), we obtain

D[Z(�,p)] =
(

e− α
2 0

0 e
α
2

) (
cos β

2 sin β

2

−sin β

2 cos β

2

)(
ei φ

2 0

0 e−i φ

2

)

×
(

e
η

2 0
0 e− η

2

) (
e−i φ

2 0

0 ei φ

2

) (
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

)(
e

τ
2 0

0 e− τ
2

)
, (9)

6 Note that the reduced spin density matrix changes as ρ′ = D(�)ρD†(�) for a purely spacial rotation transformation
�. However, the corresponding spin entropy remains invariant under such a rotation.
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where α and β satisfy

cosh α = cosh η cosh τ + sinh η sinh τ cos θ, α � 0, (10)

and

cos β = sinh η cosh τ + cosh η sinh τ cos θ√
sinh2 τ sin2 θ + (sinh η cosh τ + cosh η sinh τ cos θ)2

(11)

with π � β � 0, respectively.
As an example, consider a particle prepared in the eigenstate with helicity 1

2 , i.e., right-
handed state, with respect to some original inertial reference frame, which obviously implies
that the corresponding helicity entropy is zero, due to ψ

(− 1
2 , p

) = 0. If that particle is
described in another inertial reference frame moving with velocity v = − tanh η along
the z-axis of the original one, then substituting equation (9) into equation (6), and after
straightforward but lengthy calculations, the new reduced helicity density matrix can be
obtained as

ρ ′ =
∫

d3p

∣∣ψ(
1
2 , p

)∣∣2

2
H, (12)

where

H11 = 1 + cosh η sin β sin θ + cos β cos θ,

H12 = e−α(sinh η sin θ + cosh η cos β sin θ − sin β cos θ),

H21 = eα(−sinh η sin θ + cosh η cos β sin θ − sin β cos θ),

H22 = 1 − cosh η sin β sin θ − cos β cos θ.

(13)

For simplicity but without loss of generality, consider in particular the case where the
wavefunction is a Gaussian, i.e.,

ψ
(

1
2 , p

) = π− 3
4 σ− 3

2 e− p2

2σ2 , (14)

where σ is the distribution width. However, different from the spin case investigated in [8], the
later calculations, especially the integral in equation (12), cannot be carried out analytically.
Thus note that the Von Neumann entropy formula reads

S = −tr(ρ log2 ρ) = −
∑
i=1,2

ρi log2 ρi, (15)

where {ρi} are the eigenvalues of the reduced density matrix ρ, we now resort to numerical
methods to perform all calculations. The corresponding results are illustrated in figure 1.

As shown in figure 1, with the increase of speed of inertial observers, the variation of
the corresponding helicity entanglement entropy remarkably demonstrates different behaviors
from that for the spin case investigated in [8]. In particular, for the limiting case of sharp
momenta which corresponds to the small width–mass ratio σ

m
, the helicity entanglement

entropy blows up from zero and rapidly saturates. Speaking specifically, it arrives at a
constant value (about 0.5, half of the entropy value for the maximal entangled Bell states)
at small velocities of observers, and then remains nearly invariant regardless of the increase
of speed of observers, while the spin entropy always remains vanishing, as mentioned in the
beginning [8]. On the other hand, for the large width–mass ratio limiting case, the resultant
helicity entanglement entropy remains zero.

Obviously this novel phenomenon differs greatly from that related to the spin case, and
unique to the helicity considered here [8–12]. The key physics underlying this seemingly
odd phenomenon lies in the following fact: with the smaller width–mass ratio σ

m
, i.e., sharper

momentum distribution, the helicity of the prepared particle becomes more sensitive to Lorentz



Fast Track Communication F861

Figure 1. The helicity entropy S as a function of the speed v of inertial observers with respect to
the original inertial reference frame.

(This figure is in colour only in the electronic version)

boost, due to the concentration of its momentum in a smaller neighborhood around zero. In
other words, for the smaller width–mass ratio case, the smaller speed of observers is needed to
make the flip of helicity from right to left saturate such that the corresponding helicity entropy
reaches the saturated value.

In summary, the transformation of the reduced helicity density matrix under Lorentz group
is calculated for a massive spin- 1

2 particle. Especially, we have investigated the helicity entropy
for a Gaussian one-particle state appealing to numerical computation. Our results show that
the helicity entanglement entropy is not an invariant scalar, which is the same as the previously
considered spin entropy. Nevertheless, as the speed of inertial observers increases, the specific
variation of helicity entropy demonstrates a surprisingly distinct behavior from that of spin
entropy, which essentially originates from the fact that the helicity states differ significantly
from the spin states in transformation property under Lorentz boost. Put it another way, unlike
the spin, the helicity can be more readily flipped by relatively small speed of observers when
the momentum distribution is sharp enough.

Associated with this unique feature of helicity, the theoretical implications in quantum
information theory and experimental ramifications in high-energy physics both need to be
further investigated. In addition, our present calculations are restricted into a specific case
in a general framework, i.e., a purely Gaussian one-particle state. A direct but non-trivial
generalization is to adopt other momentum distributions. In addition, more attractive issues
involve multi-particle state entanglement, and distillable entanglement of mixed state for the
helicity, as developed for the spin case.
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